PENDIDIKAN KARAKTER

Apa Itu Karakter?

Dennis Coon dalam bukunya Introduction to Psychology : Exploration and Aplication mendefinisikan karakter sebagai suatu penilaian subyektif terhadap kepribadian seseorang yang berkaitan dengan atribut kepribadian yang dapat atau tidak dapat diterima oleh masyarakat. Karakter adalah jawaban mutlak untuk menciptakan kehidupan yang lebih baik didalam masyarakat.

Beda Karakter dan Kepribadian (Sifat Dasar)

Kepribadian adalah hadiah dari Tuhan Sang Pencipta saat manusia dilahirkan dan setiap orang yang memiliki kepribadian pasti ada kelemahannya dan kelebihannya di aspek kehidupan sosial dan masing-masing pribadi. Kepribadian manusia secara umum ada 4, yaitu : Koleris – Sanguinis – Phlegmatis – Melankolis.

Nah, Karakternya dimana? Saat setiap manusia belajar untuk mengatasi dan memperbaiki kelemahannya, serta memunculkan kebiasaan positif yang baru, inilah yang disebut dengan Karakter. Misalnya, seorang dengan kepribadian Sanguin yang sangat suka bercanda dan terkesan tidak serius, lalu sadar dan belajar sehingga mampu membawa dirinya untuk bersikap serius dalam situasi yang membutuhkan ketenangan dan perhatian fokus, itulah Karakter.

Mengapa Seorang Anak Butuh Pendidikan Karakter?

Pada dasarnya, pada perkembangan seorang anak adalah mengembangkan pemahaman yang benar tentang bagaimana dunia ini bekerja, mempelajari ”aturan main” segala aspek yang  ada di dunia ini . Anak-anak akan tumbuh menjadi pribadi yang berkarakter apabila dapat tumbuh pada lingkungan yang berkarakter

 

Ada 3 Cara Mendidik Karakter Anak:

1. Ubah Lingkungannya, melakukan pendidikan karakter dengan cara menata peraturan serta konsekuensi di sekolah dan dirumah.

2. Berikan Pengetahuan, memberikan pengetahuan bagaimana melakukan perilaku yang diharapakan untuk muncul dalam kesehariannya serta diaplikasikan.

3. Kondisikan Emosinya, emosi manusia adalah kendali 88% dalam kehidupan manusia. Jika mampu menyentuh emosinya dan memberikan informasi yang tepat maka informasi tersebut akan menetap dalam hidupnya.

 

Karakter apa yang perlu ditumbuhkan dan dibentuk dalam diri anak?

  1. Karakter cinta Tuhan dan segenap ciptaan-Nya
  1. Kemandirian dan Tanggung Jawab
  1. Kejujuran atau Amanah, Diplomatis
  1. Hormat dan Santun
  1. Dermawan, Suka Tolong Menolong & Gotong Royong
  1. Percaya Diri dan Pekerja Cerdas
  1. Kepemimpinan dan Keadilan
  1. Baik dan Rendah Hati
  1. Karakter Toleransi, Kedamaian dan Kesatuan.

 

Saat ini kami memiliki 3 program pendidikan karakter yang menjadi fokus dari kurikulum kami, yaitu :

1. Training Guru

Terkait dengan program pendidikan karakter disekolah, bagaimana menjalankan dan melaksanakan pendidikan karakter disekolah, serta bagaimana cara menyusun program dan melaksanakannya, dari gagasan ke tindakan.

Program ini membekali dan memberikan wawasan pada guru tentang psikologi anak, cara mendidik anak dengan memahami mekanisme pikiran anak dan 3 faktor kunci untuk menciptakan anak sukses, serta kiat praktis dalam memahami dan mengatasi anak yang “bermasalah” dengan perilakunya.

 

2. Program Kurikulum Pendidikan Karakter

Kami memberikan sistem pengajaran dan materi yang lengkap (untuk 1 tahun ajaran) serta detail dan aplikasi untuk sekolah dan materi untuk orang tua murid. Materi ini telah diuji coba lebih dari 5 tahun, disamping itu dalam program ini ada pendampingan dan training khusus untuk guru.

Training khusus guru ini dikhususkan untuk menciptakan suksesnya pendidikan karakter disekolah, disamping pemberian materi yang “advance” dari program training guru pertama. Karena disini para guru akan mempelajari aspek psikologi manusia (bukan hanya anak, tetapi untuk dirinya sendiri) dan menanamkan nilai-nilai kehidupan yang baik pada dirinya, murid dan keluarga. Guru akan memiliki “tools” untuk membantu menciptakan anak yang berkarakter lebih baik.

 

 

3. Program Bimbingan Mental

Program ini terbagi menjadi dua sesi program :

Sesi Workshop Therapy, yang dirancang khusus untuk siswa usia 12 -18 tahun. Workshop ini bertujuan mengubah serta membimbing mental anak usia remaja. Workshop ini bekerja sebagai “mesin perubahan instant” maksudnya setelah mengikuti program ini anak didik akan berubah seketika menjadi anak yang lebih positif.

Sesi Seminar Khusus Orangtua Siswa, membantu orangtua mengenali anaknya dan memperlakukan anak dengan lebih baik, agar anak lebih sukses dalam kehidupannya. Dalam seminar ini orangtua akan mempelajari pengetahuan dasar yang sangat bagus untuk mempelajari berbagai teori psikologi anak dan keluarga. Memahami konsep menangani anak di rumah dan di sekolah, serta lebih mudah mengerti dan memahami jalan pikiran anak, pasangan dan orang lain.

Iklan

LEARNING FOR YOUNG CHILDRES

How Young Children Learn

Bredekamp (1990) describes how young children learn and indicates effective ways of teaching them:

 

How Young Children LearnYoung children learn by doing. The work of Piaget (1950, 1972), Montessori (1964), Erikson (1950), and other child development theorists and researchers (Elkind, 1986; Kamii, 1985) has demonstrated that learning is a complex process that results from the interaction of children’s own thinking and their experiences in the external world. Maturation is an important contributor to learning because it provides a framework from which children’s learning proceeds. As children get older, they acquire new skills and experiences that facilitate the learning process. For example, as children grow physically, they are more able to manipulate and explore their own environment. Also, as children mature, they are more able to understand the point of view of other people.

Knowledge is not something that is given to children as though they were empty vessels to be filled. Children acquire knowledge about the physical and social worlds in which they live through playful interaction with objects and people. Children do not need to be forced to learn; they are motivated by their own desire to make sense of their world.

How to Teach Young Children

How young children learn should determine how teachers of young children teach. The word teach tends to imply telling or giving information. But the correct way to teach young children is not to lecture or verbally instruct them. Teachers of young children are more like guides or facilitators (Forman & Kuschner, 1983; Lay-Dropyera & Dropyera, 1986; Piaget, 1972). They prepare the environment so that it provides stimulating, challenging materials and activities for children. Then, teachers closely observe to see what children understand and pose additional challenges to push their thinking further.

It is possible to drill children until they can correctly recite pieces of information, such as the alphabet or the numerals from 1 to 20. However, children’s reposes to rote tasks do not reflect real understanding of the information. For children to understand fully and remember what they have learned–whether it is related to reading, mathematics, or other subject matter areas–the information must be meaningful to the child in context of the child’s experience and development. Learning information in meaningful context is not only essential for children’s understanding and development of concepts, but is also important for stimulating motivation in children. If learning is relevant for children, they are more likely to persist with a task and to be motivated to learn more.” (pp. 51-53)

 

EXPRESSION OF SATISFICATION

Expressing Satisfaction/Dissatisfaction Artikel ini diperuntukkan bagi siswa yang ingin belajar berbicara. Kali ini kita membahas cara mengungkapkan rasa puas dan tidak puas dalam bahasa Inggris. Perhatikan model percakapan mengungkapkan rasa puas (satisfaction) dan tidak puas (dissatisfaction) berikut ini.  Conversation (in a restaurant/photobucket) Waiter: “Is everything O.K. here?”  Man: “Yes, thank you. Everything is fine.”  Waiter: “Is your steak satisfactory?” Woman: “Quite good.” Waiter: “How about your roast beef, Ma’am? Is it O.K. too?” Woman: “It’s just right. Just the way I like it.” Man: “I just wanna tell you something. I’m very dissatisfied with the condition. Maybe you need to play some music. It will be fun, I think ” Waiter: “I’ll try and take care of it. Anything else?” Man: “Thanks.” Pelayan menanyakan rasa puas dan tidak puas pelanggan dengan bertanya: Is everything O.K. here? Is your steak satisfactory? How about your roast beef, Ma’am? Laki-laki itu mengungkapkan rasa puas terhadap pelayanan di tempat itu dengan mengucapkan: Everything is fine. Rasa puas terhadap pelayanan juga diungkapkan pelanggan wanita dengan mengucapkan: Quite good. It’s just right. Just the way I like it. Namun pelanggan laki-laki mengungkapkan satu hal yang membuatnya tidak puas di tempat itu dengan mengucapkan: I’m very dissatisfied with the condition. Pelayan restoran menanggapinya dengan mengucapkan: I’ll try and take care of it. Berikut ini adalah beberapa ungkapan untuk menanyakan rasa puas/tidak puas, mengungkapkan puas/tidak puas dan merespon ungkapan puas/tidak puas. Asking about satisfaction/dissatisfaction How do you like your room? Is everything O.K.? Is everything satisfactory? Are you satisfied? Did you find our service satisfactory? Do you want to complain about something? Was something no to your satisfaction? Are you satisfied with something? Expressing satisfaction I really like my new haircut. I’m completely satisfied with everything you’ve done for me. It was satisfactory. Everything is fine, thank you. Everything was just perfect. I’m happy enough with it. I was okay. Not too bad. Good enough. Expressing dissatisfaction I am a little dissatisfied with the service here. I am a bit disappointed with the program. The food was lousy. I’m tired of working here. I don’t like the color. I have a complaint. I’m very dissatisfied with the condition. I want to make a complaint. Responding to dissatisfaction I see. I’m sorry to hear that. I’ll look into it. I’ll see what I can do about it. I’ll try and take care of it. Source Look Ahead 2 _____________________________________ Learning Speaking Percakapan Berisi Pengumuman Dalam Bahasa Inggris Meminta dengan Sopan dalam Bahasa Inggris (Making Polite Request) Cara Memperkenalkan Teman Menggunakan Bahasa Inggris (Introducing a Friend) Cewek Cantik Memperkenalkan Diri dalam Bahasa Inggris (Video) Contoh Percakapan Bahasa Inggris Tentang Liburan Percakapan Singkat Menggunakan Bahasa Inggris Perkenalan Diri Dalam Bahasa Inggris Percakapan Bahasa Inggris – Meminta Bantuan (Asking for Help) Percakapan Dokter Dengan Pasien Dalam Bahasa Inggris Ungkapan Mengajak Dalam Bahasa Inggris

Read more at: http://www.sekolahoke.com/2011/07/expressing-satisfactiondissatisfaction.html
Copyright Sekolahoke.com – Belajar Bahasa Inggris Online di sekolahoke.com yuk! Klik aja http://www.sekolahoke.com/ Under Common Share Alike Atribution

KIND OF EXPRESSION

  1.  5 expressions of persuading
  • Why don’t you …
  • It will be better if …
  • If I am in your position I will …
  • It is better if …
  • The result will be better if you …
  • Let’s …

 

  1. 5 expressions of encouragement
  • Don’t give up …
  • Break a leg …
  • Don’t just stand there, do something!
  • Cheer up …
  • Keep on fighting until the end!
  • I believe you can.
  • Keep the spirit!
  • You can.

 

  1. 5 expressions of regret
  • Oh, I am so sorry.
  • If I had … I would …
  • If I had V-3 … I would have V-3 …
  • I wish …
  • I regret doing …
  • Conditional type 2 dan 3

 

  1.  5 expressions of plans, intention, and purposes
  • Do you have any plans ________?
  • Do you have any intention ________?
  • Do you have any purpose ________?
  • What do you want to achieve?
  • What is your goal?
  • What is your aim?
  • What dou you want to reach?
  • What’s the plan?
  • Is that what you want?
  • I intend …
  • I plant to …

 

  1.  5 expressions of prediction, speculating
  • I guess …
  • We can speculate that …
  • I would say …
  • I think …
  • I predict that …
  • It is possible …
  • It’s probably …

TATA SURYA

Tata Surya

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari

Gambaran umum Tata Surya (Ukuran planet digambarkan sesuai skala, sedangkan jaraknya tidak): Matahari, Merkurius, Venus, Bumi, Mars, Ceres, Yupiter, Saturnus, Uranus, Neptunus, Pluto, Haumea, Makemake dan Eris.

Dengarkan artikel (info/dl)

Berkas suara ini dibuat dari revisi tanggal 2010-09-10, dan tidak termasuk suntingan terbaru ke artikel. (Bantuan suara)
Ini adalah versi suara dari artikel. Klik di sini untuk mendengarkan.

Tata Surya[a] adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi[b], dan jutaan benda langit (meteor, asteroid, komet) lainnya.

Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.

Berdasarkan jaraknya dari Matahari, kedelapan planet Tata Surya ialah Merkurius (57,9 juta km), Venus (108 juta km), Bumi (150 juta km), Mars (228 juta km), Yupiter (779 juta km), Saturnus (1.430 juta km), Uranus (2.880 juta km), dan Neptunus (4.500 juta km). Sejak pertengahan 2008, ada lima objek angkasa yang diklasifikasikan sebagai planet kerdil. Orbit planet-planet kerdil, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet kerdil tersebut ialah Ceres (415 juta km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima), Pluto (5.906 juta km.; dulunya diklasifikasikan sebagai planet kesembilan), Haumea (6.450 juta km), Makemake (6.850 juta km), dan Eris (10.100 juta km).

Enam dari kedelapan planet dan tiga dari kelima planet kerdil itu dikelilingi oleh satelit alami. Masing-masing planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.

Daftar isi

Asal usul

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, beberapa di antaranya adalah:

Pierre-Simon Laplace, pendukung Hipotesis Nebula

Gerard Kuiper, pendukung Hipotesis Kondensasi

Hipotesis Nebula

Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (16881772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (17241804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling Matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]

Hipotesis Planetisimal

Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan Matahari, dan bersama proses internal Matahari, menarik materi berulang kali dari Matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari Matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.

Hipotesis Pasang Surut Bintang

Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada Matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari Matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]

Hipotesis Kondensasi

Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (19051973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.

Hipotesis Bintang Kembar

Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (19152001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.

Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia “lebih tajam” dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.

Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Model heliosentris dalam manuskrip Copernicus.

Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit BumiYupiter.

Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya

Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.

Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.

Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).

Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

Struktur

Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.

Orbit-orbit Tata Surya dengan skala yang sesungguhnya

Illustrasi skala

Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[5] Yupiter dan Saturnus, dua komponen terbesar yang mengedari Matahari, mencakup kira-kira 90 persen massa selebihnya.[c]

Hampir semua objek-objek besar yang mengorbit Matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.

Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi Matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara Matahari, terkecuali Komet Halley.

Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling Matahari bergerak mengikuti bentuk elips dengan Matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari Matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan Matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan Matahari dinamai perihelion, sedangkan jarak terjauh dari Matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.

Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari Matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.

Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.

Terminologi

Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[6] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.[7]

Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari Matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8]

Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi Matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[8] Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris.[9] Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut “plutoid”.[10] Sisa objek-objek lain berikutnya yang mengitari Matahari adalah benda kecil Tata Surya.[8]

Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[11] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut “es raksasa”), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[12]

Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, ‘volatiles’ dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.

Zona planet

Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)

Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari Matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.

Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).

Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.

Jarak rata-rata antara planet-planet dengan Matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.

Matahari

!Artikel utama untuk bagian ini adalah: Matahari

Matahari dilihat dari spektrum sinar-X

Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.

Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, Matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan Matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari Matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[13]

Dipercayai bahwa posisi Matahari pada deret utama secara umum merupakan “puncak hidup” dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang.[14]

Matahari secara metalisitas dikategorikan sebagai bintang “populasi I”. Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium (“metal” dalam sebutan astronomi) dibandingkan dengan bintang “populasi II”.[15] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini.

Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[16]

Medium antarplanet

Lembar aliran heliosfer, karena gerak rotasi magnetis Matahari terhadap medium antarplanet.

Di samping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin surya. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[17] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet.

Badai geomagnetis pada permukaan Matahari, seperti semburan Matahari (solar flares) dan lontaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[18] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis Matahari terhadap medium antarplanet.[19][20] Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin surya. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[21] Interaksi antara angin surya dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.

Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet Matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[22]

Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[23] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.[24][25]

Tata Surya bagian dalam

Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.

Planet-planet bagian dalam

!Artikel utama untuk bagian ini adalah: Planet kebumian

Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)

Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.

Merkurius
Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan (“akresi”) penuhnya terhambat oleh energi awal Matahari.[28][29]
Venus
Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.[31]
Bumi
Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars
Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]

Sabuk asteroid

!Artikel utama untuk bagian ini adalah: Sabuk asteroid

Sabuk asteroid utama dan asteroid Troya

Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.[35]

Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.[36]

Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.[37]

Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer.[38] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[39] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.[40]

Ceres

Ceres

Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[41] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.

Kelompok asteroid

Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. satelit asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari satelit-satelit planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.[42]

Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan “trojan” sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari Matahari tiga kali untuk setiak dua edaran Yupiter.

Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.

Tata Surya bagian luar

Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut “es” dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.

Planet-planet luar

!Artikel utama untuk bagian ini adalah: Raksasa gas

Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala

Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit Matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[43] Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.

Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[44] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[45] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari Matahari dengan bujkuran poros 90 derajat pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[46] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus.[47] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[48] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.

Komet

!Artikel utama untuk bagian ini adalah: Komet

Komet Hale-Bopp

Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari Matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.

Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[49] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[50] Komet tua yang bahan volatilesnya telah habis karena panas Matahari sering dikategorikan sebagai asteroid.[51]

Centaur

Centaur adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[52] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati Matahari.[53] Beberapa astronom mengklasifikasikan Centaurs sebagai objek sabuk Kuiper sebaran-ke-dalam (inward-scattered Kuiper belt objects), seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[54]

Daerah trans-Neptunus

Plot seluruh objek sabuk Kuiper

Diagram yang menunjukkan pembagian sabuk Kuiper

Daerah yang terletak jauh melampaui Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.

Sabuk Kuiper

!Artikel utama untuk bagian ini adalah: Sabuk Kuiper

Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari benda kecil Tata Surya. Meski demikian, beberapa objek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi.[55] Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.

Sabuk Kuiper secara kasar bisa dibagi menjadi “sabuk klasik” dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[56] Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [57]

Pluto dan Charon

Pluto dan ketiga satelitnya

Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah objek terbesar sejauh ini di Sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang kesembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari Matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.

Tidak jelas apakah Charon, satelit Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau menjadi sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitasi di atas permukaannya, yang membuat Pluto-Charon sebuah sistem ganda. Dua satelit yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari Matahari dua kali untuk setiap tiga edaran Neptunus. Objek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutino.[58]

Haumea dan Makemake

Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua objek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah objek berbentuk telur dan memiliki dua satelit. Makemake adalah objek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [59] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Objek Sabuk Kuiper klasik.

Piringan tersebar

!Artikel utama untuk bagian ini adalah: Piringan tersebar

Hitam: tersebar; biru: klasik; hijau: resonan

Eris dan satelitnya Dysnomia

Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects, atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari Matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai “objek sabuk Kuiper tersebar” (scattered Kuiper belt objects).[60]

Eris

Eris (rata-rata 68 SA) adalah objek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet, karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2.400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu satelit, Dysnomia.[61] Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38,2 SA (mirip jarak Pluto ke Matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.

Daerah terjauh

Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin surya dan gravitasi Matahari. Batasan terjauh pengaruh angin surya kira kira berjarak empat kali jarak Pluto dan Matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi Matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.

Heliopause

Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruang antarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari Matahari pada daerah lawan angin dan sekitar 200 SA dari Matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperti ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari Matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin surya berhenti dan ruang antar bintang bermula.

Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet Matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan Matahari seiring edarannya berkeliling di Bima Sakti.

Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin surya. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep “Vision Mission” yang akan khusus mengirimkan satelit penjajak ke heliosfer.

Awan Oort

!Artikel utama untuk bagian ini adalah: Awan Oort

Gambaran seorang artis tentang Awan Oort

Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilyun-trilyun objek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50.000 SA (sekitar 1 tahun cahaya) sampai sejauh 100.000 SA (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Objek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.[62][63]

Sedna

Foto teleskop Sedna

90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu objek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah objek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3.420 tahun. Brown menjuluki kelompok ini “Awan Oort bagian dalam”, karena mungkin terbentuk melalui proses yang mirip, meski jauh lebih dekat ke Matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatannya masih harus ditentukan dengan pasti.

Batasan-batasan

Lihat pula: Planet X

Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi Matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain, tidak lebih besar dari 50.000 SA.[64] Sekalipun Sedna telah ditemukan, daerah antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dikatakan belum dipetakan. Selain itu, juga ada studi yang sedang berjalan, yang mempelajari daerah antara Merkurius dan matahari.[65] Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.

Dimensi

Perbandingan beberapa ukuran penting planet-planet:

Karakteristik Merkurius Venus Bumi Mars Yupiter Saturnus Uranus Neptunus
Jarak orbit (juta km) (SA) 57,91 (0,39) 108,21 (0,72) 149,60 (1,00) 227,94 (1,52) 778,41 (5,20) 1.426,72 (9,54) 2.870,97 (19,19) 4.498,25 (30,07)
Waktu edaran (tahun) 0,24 (88 hari) 0,62 (224 hari) 1,00 1,88 11,86 29,45 84,02 164,79
Jangka rotasi 58,65 hari 243,02 hari 23 jam 56 menit 24 jam 37 menit 9 jam 55 menit 10 jam 47 menit 17 jam 14 menit 16 jam 7 menit
Eksentrisitas edaran 0,206 0,007 0,017 0,093 0,048 0,054 0,047 0,009
Sudut inklinasi orbit (°) 7,00 3,39 0,00 1,85 1,31 2,48 0,77 1,77
Sudut inklinasi ekuator terhadap orbit (°) 0,00 177,36 23,45 25,19 3,12 26,73 97,86 29,58
Diameter ekuator (km) 4.879 12.104 12.756 6.805 142.984 120.536 51.118 49.528
Massa (dibanding Bumi) 0,06 0,81 1,00 0,15 317,8 95,2 14,5 17,1
Kepadatan menengah (g/cm³) 5,43 5,24 5,52 3,93 1,33 0,69 1,27 1,64
Suhu permukaan
min.
menengah
maks.
-173 °C
+167 °C
+427 °C
+437 °C
+464 °C
+497 °C
-89 °C
+15 °C
+58 °C
-133 °C
-55 °C
+27 °C

-108 °C

-139 °C

-197 °C

-201 °C

Konteks galaksi

Lokasi Tata Surya di dalam galaksi Bima Sakti

Lukisan artis dari Gelembung Lokal

Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[66] Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion.[67] Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik.

Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.[68] Apex Matahari, arah jalur Matahari di ruang semesta, dekat letaknya dengan rasi bintang Herkules terarah pada posisi akhir bintang Vega.[69]

Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.[70]

Tata Surya terletak jauh dari daerah padat bintang di pusat galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi.

Intensitas radiasi dari pusat galaksi juga memengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernova telah memengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah Matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet.[71]

Daerah lingkungan sekitar

Lingkungan galaksi terdekat dari Tata Surya adalah sesuatu yang dinamai Awan Antarbintang Lokal (Local Interstellar Cloud, atau Local Fluff), yaitu wilayah berawan tebal yang dikenal dengan nama Gelembung Lokal (Local Bubble), yang terletak di tengah-tengah wilayah yang jarang. Gelembung Lokal ini berbentuk rongga mirip jam pasir yang terdapat pada medium antarbintang, dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.[72]

Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari Matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan Matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya.

Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Barnard (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori ‘urutan utama’ kira-kira bermassa dua kali massa Matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).[73]

Bintang tunggal terdekat yang mirip Matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat Matahari, tetapi kecemerlangannya (luminositas) hanya 60%.[74] Planet luar Tata Surya terdekat dari Matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan, bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.[75]

Catatan

  1. ^ Kapitalisasi istilah ini beragam. Persatuan Astronomi Internasional, badan yang mengurusi masalah penamaan astronomis, menyebutkan bahwa seluruh objek astronomi dikapitalisasi namanya (Tata Surya). Namun, istilah ini juga sering ditemui dalam bentuk huruf kecil (tata surya)
  2. ^ Lihat Daftar satelit untuk semua satelit alami dari delapan planet dan lima planet kerdil.
  3. ^ Massa Tata Surya tidak termasuk Matahari, Yupiter, dan Saturnus, dapat dihitung dengan menambahkan semua massa objek terbesar yang dihitung dan menggunakan perhitungan kasar untuk massa awan Oort (sekitar 3 kali massa Bumi),,[76] sabuk Kuiper (sekitar 0,1 kali massa Bumi)[55] dan sabuk asteroid (sekitar 0,0005 kali massa Bumi)[39] dengan total massa ~37 kali massa Bumi, atau 8,1 persen massa di orbit di sekitar Matahari. Jika dikurangi dengan massa Uranus dan Neptunus (keduanya ~31 kali massa Bumi), sisanya ~6 kali massa Bumi merupakan 1,3 persen dari massa keseluruhan.
  4. ^ Astronom mengukur jarak di dalam Tata Surya dengan satuan astronomi (SA). Satu SA jaraknya sekitar jarak rata-rata Matahari dan Bumi, atau 149.598.000 km. Pluto berjarak sekitar 38 SA dari Matahari, Yupiter 5,2 SA. Satu tahun cahaya adalah 63.240 SA..

Referensi

PENCEMARAN LINGKUNGAN

Macam-macam Pencemaran dan Penyebabnya
Ada beberapa macam pencemaran, yaitu:
1. Macam-macam Pencemaran Menurut Tempatnya
a. Pencemaran tanah
Gejala pencemaran tanah dapat diketahui dari tanah yang tidak dapat digunakan untuk keperluan fisik manusia. Tanah yang tidak dapat digunakan, misalnya tidak dapat ditanami tumbuhan, tandus dan kurang mengandung air tanah. Faktor-faktor yang mengakibatkan terjadinya pencemaran tanah antara lain pembuangan bahan sintetis yang tidak dapat diuraikan oleh mikroorganisme, seperti plastik, kaleng, kaca, sehingga menyebabkan oksigen tidak bisa meresap ke tanah. Faktor lain, yaitu penggunaan pestisida dan detergen yang merembes ke dalam tanah dapat berpengaruh terhadap air tanah, flora, dan fauna tanah. Pada saat ini hampir semua pemupukan tanah menggunakan pupuk buatan atau anorganik. Zat atau unsur hara yang terkandung dalam pupuk anorganik adalah nitrogen (dalam bentuk nitrat atau urea), fosfor (dalam bentuk fosfat), dan kalium. Meskipun pupuk anorganik ini sangat menolong untuk meningkatkan hasil pertanian, tetapi pemakaian dalam jangka panjang tanpa dikombinasi dengan pupuk organik mengakibatkan dampak yang kurang bagus. Dampaknya antara lain hilangnya humus dari tanah, tanah menjadi kompak (padat) dan keras, dan kurang sesuai untuk tumbuhnya tanaman pertanian. Selain itu, pupuk buatan yang diperjualbelikan umumnya mengandung unsur hara yang tidak lengkapm terutama unsur-unsur mikro yang sangat dibutuhkan tumbuhan dan juga pupuk organik mudah larut dan terbawa ke perairan, misalnya danau atau sungai yang menyebabkan terjadinya eutrofikasi. Ketika suatu zat berbahaya atau beracun telah mencemari permukaan tanah, maka ia dapat menguap, tersapu air hujan dan atau masuk ke dalam tanah. Pencemaran yang masuk ke dalam tanah kemudian terendap sebagai zat kimia beracun di tanah. Zat beracun di tanah tersebut dapat berdampak langsung kepada manusia ketika bersentuhan atau dapat mencemari air tanah dan udara di atasnya.
Cara pencegahan dan penanggulangan pencemaran tanah, antara lain sebagai berikut.
1) Sebelum dibuang ke tanah senyawa sintetis seperti plastik sebaiknya diuraikan lebih dahulu, misalnya dengan dibakar.
2) Untuk bahan-bahan yang dapat didaur ulang, hendaknya dilakukanproses daur ulang, seperti kaca, plastik, kaleng, dan sebagainya.

3) Membuang sampah pada tempatnya.
4) Penggunaan pestisida dengan dosis yang telah ditentukan.
5) Penggunaan pupuk anorganik secara tidak berlebihan pada tanaman.

1) Remidiasi Kegiatan untuk membersihkan permukaan tanah dikenal dengan remediasi. Sebelum melakukan remediasi, hal yang perlu diketahui:

a) Jenis pencemar (organik atau anorganik), terdegradasi atau tidak, berbahaya atau tidak.
b) Berapa banyak zat pencemar yang telah mencemari tanah tersebut.
c) Perbandingan karbon (C), nitrogen (N), dan fosfat (P).
d) Jenis tanah.
e) Kondisi tanah (basah, kering).
f) Telah berapa lama zat pencemar terendapkan di lokasi tersebut.
g) Kondisi pencemaran (sangat penting untuk dibersihkan segera/bisa ditunda).

2) Remediasi onsite dan offsite

Ada dua jenis remediasi tanah, yaitu in situ (atau on site) dan ex situ (atau off site). Pembersihan on site adalah pembersihan di lokasi. Pembersihan ini lebih murah dan lebih mudah, terdiri dari pembersihan, venting (injeksi), dan bioremediasi. Pembersihan off site meliputi penggalian tanah yang tercemar dan kemudian dibawa ke daerah yang aman. Setelah itu di daerah aman, tanah tersebut dibersihkan dari zat pencemar. Caranya yaitu, tanah tersebut disimpan di bak atau tanki yang kedap, kemudian zat pembersih dipompakan ke bak atau tangki tersebut. Selanjutnya zat pencemar dipompakan keluar dari bak yang kemudian diolah dengan instalasi pengolah air limbah. Pembersihan off site ini jauh lebih mahal dan rumit.

3) Bioremediasi

Bioremediasi merupakan proses pembersihan pencemaran tanah dengan menggunakan mikroorganisme (jamur, bakteri). Bioremediasi bertujuan untuk memecah atau mendegradasi zat pencemar menjadi bahan yang kurang beracun atau tidak beracun (karbon dioksida dan air). Proses bioremediasi harus memperhatikan temperatur tanah, ketersediaan air, nutrien (N, P, K), perbandingan C : N kurang dari 30 : 1, dan ketersediaan oksigen.

Ada 4 teknik dasar yang biasa digunakan dalam bioremediasi:
a) Stimulasi aktivitas mikroorganisme asli (di lokasi tercemar) dengan penambahan nutrien, pengaturan kondisi redoks, optimasi pH, dan sebagainya.

b) Inokulasi (penanaman) mikroorganisme di lokasi tercemar, yaitu mikroorganisme yang memiliki kemampuan biotransformasi khusus.

c) Penerapan immobilized enzymes.
d) Penggunaan tanaman (phytoremediation) untuk menghilangkan atau mengubah pencemar.

b. Pencemaran air

Pencemaran air dapat diketahui dari perubahan warna, bau, serta adanya kematian dari biota air, baik sebagian atau seluruhnya. Bahan polutan yang dapat menyebabkan polusi air antara lain limbah pabrik, detergen, pestisida, minyak, dan bahan organik yang berupa sisa-sisa organisme yang mengalami pembusukan. Untuk mengetahui tingkat pencemaran air dapat dilihat melalui besarnya kandungan O2 yang terlarut. Ada 2 cara yang digunakan untuk menentukan kadar oksigen dalam air, yaitu secara kimia dengan COD (Chemical Oxygen Demand) dan BOD (Biochemical Oxygen Demand). Makin besar harga BOD makin tinggi pula tingkat pencemarannya. Polusi air yang berat dapat menyebabkan polutan meresap ke dalam air tanah yang menjadi sumber air untuk kehidupan sehari-hari seperti mencuci, mandi, memasak, dan untuk air minum. Air tanah yang sudah tercemar akan sulit sekali untuk dikembalikan menjadi air bersih. Pengenceran dan penguraian polutan pada air tanah sulit sekali karena airnya tidak mengalir dan tidak mengandung bakteri pengurai yang aerob. Penggunaan pupuk dan pestisida yang berlebihan merupakan salah satu sumber pencemaran air. Pupuk dan pestisida yang larut di air akan menyebabkan eutrofikasi yang mengakibatkan ledakan (blooming) tumbuhan air, misalnya alga dan ganggang. Cara pencegahan dan penanggulangan pencemaran air dapat dilakukan sebagai berikut:

1) Cara pemakaian pestisida sesuai aturan yang ada.
2) Sisa air buangan pabrik dinetralkan lebih dahulu sebelum dibuang ke sungai

3) Pembuangan air limbah pabrik tidak boleh melalui daerah pemukiman penduduk. Hal ini bertujuan untuk menghindari keracunan yang mungkin terjadi karena penggunaan air sungai oleh penduduk.

4) Setiap rumah hendaknya membuat septi tank yang baik.

c. Pencemaran udara

Pencemaran udara dapat bersumber dari manusia atau dapat berasal dari alam. Pencemaran oleh alam, misalnya letusan gunung berapi yang mengeluarkan debu, gas CO, SO2, dan H2S. Partikel-partikel zat padat yang mencemari udara di antaranya berupa debu, jelaga, dan partikel logam. Partikel logam yang paling banyak menyebabkan pencemaran adalah Pb yang berasal dari pembakaran bensin yang mengandung TEL (tetraethyl timbel). Adanya pencemaran udara ditunjukkan oleh adanya gangguan pada makhluk hidup yang berupa kesukaran bernapas, batuk, sakit tenggorokan, mata pedih, serta daun-daun yang menguning pada tanaman. Zat-zat lain yang umumnya mencemari lingkungan, antara lain:
1) Oksida karbon (CO dan CO2) dapat mengganggu pernapasan, tekanan darah, saraf, dan mengikat Hb sehingga sel kekurangan O2.

2) Oksida sulfur (SO2 dan SO3) dapat merusak selaput lendir hidung dan tenggorokan.
3) Oksida nitrogen (NO dan NO2) dapat menimbulkan kanker.
4) Hidrokarbon (CH4 dan C4H10), menyebabkan kerusakan saraf pusat.

5) Ozon (O3) menyebabkan bronkithis dan dapat mengoksidasi lipida. Cara pencegahan dan penanggulangan terhadap pencemaran udara, antara lain sebagai berikut.
a) Perlu dibatasi penggunaan bahan bakar yang menghasilkan CO.

b) Menerapkan program penghijauan di kota-kota untuk mengurangi tingkat pencemaran.
c) Memilih lokasi pabrik dan industri yang jauh dari keramaian dan pada tanah yang kurang produktif.

d) Gas-gas buangan pabrik perlu dibersihkan dahulu sebelum dikeluarkan ke udara bebas. Pembersihan dapat menggunakan alat tertentu, misalnya cottrell yang berfungsi untuk menyerap debu. Meningkatnya kadar karbon dioksida di atmosfer juga dapat membahayakan kelangsungan hidup makhluk hidup yang ada di bumi
ini. Konsentrasi karbon dioksida yang berasal dari sisa pembakaran, asap kendaraan, dan asap pabrik dapat menimbulkan efek rumah kaca (green house effect). Efek rumah kaca dapat mengakibatkan:

1) Adanya pemanasan global yang mengakibatkan naiknya suhu di bumi.
2) Mencairnya es yang ada di kutub, sehingga mengakibatkan naiknya permukaan air laut.
3) Tenggelamnya daratan (pulau) sebagai akibat dari mencairnya es di kutub.

d. Pencemaran suara

Polusi suara disebabkan oleh suara bising kendaraan bermotor, kapal terbang, deru mesin pabrik, radio, atau tape recorder yang berbunyi keras sehingga mengganggu pendengaran.

2. Macam-macam Pencemaran Menurut Bahan Pencemarnya

a. Pencemaran kimiawi adalah pencemaran yang disebabkan oleh bahan yang berupa zat radioaktif, logam (Hg, Pb, As, Cd, Cr dan Hi), pupuk anorganik, pestisida, detergen, dan minyak.
b. Pencemaran biologi adalah pencemaran yang disebabkan oleh bahan yang berupa mikroorganisme, misalnya Escherichia coli, Entamoeba coli, dan Salmonella thyposa.
c. Pencemaran fisik adalah pencemaran yang disebabkan oleh bahan yang berupa kaleng-kaleng, botol, plastik, dan karet.

B. Perubahan Lingkungan

Perubahan lingkungan dapat terjadi oleh aktivitas manusia atau kejadian alam seperti letusan gunung berapi, tanah longsor, dan kebakaran hutan. Perubahan lingkungan yang terjadi, baik yang dilakukan oleh manusia atau kejadian alam dapat bersifat positif, artinya bermanfaat bagi kesejahteraan manusia dan bersifat negatif yang merugikan bagi kehidupan manusia. Perubahan lingkungan terjadi apabila ada perubahan dalam daur biologi atau daur biogeokimia. Penebangan pohon di hutan tanpa perhitungan akan menimbulkan akibat yang saling berantai antara faktor biotik dan abiotik. Penebangan hutan berarti menghilangkan sebagian besar produsen dalam suatu ekosistem. Karena itu akan menyebabkan kepunahan sebagian flora dan fauna yang ada di hutan tersebut. Pengaruh yang lainnya, dengan pembukaan hutan akan menyebabkan perubahan dalam daur hidrologi. Bila hujan turun pada tanah yang terbuka, maka air akan langsung masuk ke dalam tanah yang memiliki kesuburan yang tinggi. Dengan tidak adanya pohon yang menahan air hujan yang meresap ke dalam tanah akan menyebabkan aliran air di permukaan tanah menjadi besar. Adanya aliran yang besar dan cepat akan mengikis permukaan tanah yang subur. Hilangnya kesuburan tanah akan mengurangi populasi cacing tanah yang berperan membantu menyuburkan tanah. Kurangnya resapan air di dalam tanah akan menyebabkan kekeringan di musim kemarau. Dengan penebangan pohon, menyebabkan dasar hutan lebih banyak menerima cahaya matahari dan suhu akan naik, yang dapat menyebabkan lebih cepatnya penguraian sampah organik sebagai sumber zat hara tanah. Penguraian sampah organik di tanah secara drastis akan mengganggu daur nitrogen. Selain penebangan hutan, penggunaan pestisida maupun pupuk yang berlebihan juga akan menyebabkan perubahan lingkungan. Pemasukan limbah, seperti pupuk anorganik pada perairan akan menyebabkan bertambahnya zat hara yang lebih besar dibandingkan dengan yang dapat diserap pada daur biologi dalam proses penguraian dan fotosintesis. Zat hara yang kaya akan merangsang pertumbuhan fitoplankton terutama ganggang biru yang semuanya tidak dapat dikonsumsi oleh zooplankton. Selain itu, populasi fitoplankton yang sangat banyak pada permukaan air akan menghalangi cahaya matahari menembus perairan bagian bawah yang dapat menyebabkan kerugian bagi berbagai organisme, sehingga menyebabkan kematian. Penggunaan pestisida dan herbisida yang bermanfaat untuk membasmi gulma dan hama dalam jangka panjang secara langsung maupun tidak langsung akan membahayakan ekosistem. Penggunaan pestisida juga dapat menyebabkan kematian hewan-hewan invertebrata maupun vertebrata. Pengembalian lingkungan yang sudah berubah merupakan pekerjaan yang sulit dan memerlukan biaya yang besar serta waktu yang panjang. Untuk itu perlu dijaga agar kerusakan lingkungan tidak terjadi. Ada beberapa hal yang dapat dilakukan untuk menjaga kelestarian lingkungan, seperti:
1. Melakukan perlindungan hutan dengan cara antara lain: menebang hutan secara selektif, melakukan reboisasi, mencegah terjadinya kebakaran hutan, pangadaan taman nasional, dan lain-lain.

2. Menggunakan pestisida dan pupuk sesuai dosis yang dianjurkan.
3. Mengolah limbah sebelum dibuang ke sungai atau ke saluran air yang lain.
4. Tidak membuang sampah sembarangan.
5. Melakukan proses daur ulang untuk sampah yang bisa dimanfaatkan.

C. Upaya Pencegahan Pencemaran Lingkungan
Pada dasarnya ada tiga cara yang dapat dilakukan dalam rangka pencegahan pencemaran lingkungan, yaitu:

1. Secara Administratif

Upaya pencegahan pencemaran lingkungan secara administratif adalah pencegahan pencemaran lingkungan yang dilakukan oleh pemerintah dengan cara mengeluarkan kebijakan atau peraturan yang berhubungan dengan lingkungan hidup. Contohnya adalah dengan keluarnya undang-undang tentang pokok-pokok pengelolaan lingkungan hidup yang dikeluarkan oleh presiden Republik Indonesia pada tanggal 11 Maret 1982. Dengan adanya AMDAL sebelum adanya proyek pembangunan pabrik dan proyek yang lainnya.

2. Secara Teknologis

Cara ini ditempuh dengan mewajibkan pabrik untuk memiliki unit pengolahan limbah sendiri. Sebelum limbah pabrik dibuang ke lingkungan, pabrik wajib mengolah limbah tersebut terlebih dahulu sehingga menjadi zat yang tidak berbahaya bagi lingkungan.

3. Secara Edukatif

Cara ini ditempuh dengan melakukan penyuluhan terhadap masyarakat akan pentingnya lingkungan dan betapa bahayanya pencemaran lingkungan. Selain itu, dapat dilakukan melalui jalur pendidikan-pendidikan formal atau sekolah.

D. Parameter Pencemaran dalam Lingkungan

Untuk mengetahui apakah suatu lingkungan tercemar atau tidak, atau untuk mengetahui seberapa besar kadar pencemaran dalam lingkungan dapat dilihat dari parameter sebagai berikut:

1. Parameter Kimia

Parameter ini meliputi kandungan karbon dioksida, tingkat keasaman, dan kadar logam-logam berat dalam lingkungan tersebut.

2. Parameter Biokimia

Parameter biokimia dapat dilihat dari BOD (Biologycal Oxygen Demand) atau kebutuhan oksigen secara biologis.

3. Parameter Fisik

Dilihat dari suhu, warna, rasa, bau, dan juga radioaktivitas pada lokasi tersebut.

4. Parameter Biologi
Parameter biologi meliputi ada tidaknya mikroorganisme dalam wilayah tersebut.

E. Jenis-jenis Limbah dan Pemanfaatan Limbah

Seiring dengan bertambahnya jumlah penduduk, maka kebutuhan manusia juga semakin meningkat sehingga jumlah sampah yang dihasilkan juga semakin tinggi. Limbah yang langsung dibuang ke lingkungan tanpa diolah terlebih dulu dapat mengganggu keseimbangan ekosistem. Secara biologis, limbah dapat dibagi menjadi:

1. Limbah yang Dapat Diuraikan (Biodegradable)

Limbah jenis ini adalah limbah yang dapat diuraikan atau\ didekomposisi, baik secara alamiah yang dilakukan oleh dekomposer (bakteri dan jamur) ataupun yang disengaja oleh manusia, contohnya adalah limbah rumah tangga, kotoran hewan, daun, dan ranting.

2. Limbah yang Tak Dapat Diuraikan (Nonbiodegradable)

Adalah limbah yang tidak dapat diuraikan secara alamiah oleh dekomposer. Keberadaan limbah jenis ini di alam sangat membahayakan, contohnya adalah timbal (Pb), merkuri, dan plastik. Untuk menanggulangi menumpuknya sampah tersebut maka diperlukan upaya untuk dapat menanggulangi hal tersebut. Pemanfaatan limbah dapat ditempuh melalui dua cara, yaitu dengan proses daur ulang menjadi produk tertentu yang bermanfaat dan tanpa daur ulang.

1. Melalui Daur Ulang
Baik limbah organik (yang berasal dari sisa makhluk hidup) maupun sampah anorganik (dari bahan-bahan tak hidup atau bahan sintetis) dapat dimanfaatkan menjadi suatu produk yang bermanfaat bagi kebutuhan manusia. Limbah-limbah organik seperti sisa-sisa kotoran hewan dan yang berasal dari tumbuhan dapat dimanfaatkan menjadi pupuk kompos yang dapat digunakan untuk menyuburkan tanaman. Limbah kertas juga dapat didaur ulang menjadi kertas baru. Limbah pabrik tahu yang biasanya dibuang begitu saja juga dapat dimanfaatkan menjadi makanan yang berserat tinggi yang baik untuk pencernaan. Limbah-limbah anorganik, contohnya besi, aluminium, botol kaca, dan plastik dapat didaur ulang menjadi produk-produk baru. Besi tua dan aluminium dapat dilebur dijadikan bubur kemudian dicetak menjadi besi baja dan aluminium yang baru. Limbah-limbah plastik juga dapat dilebur dijadikan peralatan rumah tangga dan peralatan lain dari plastik.
2. Tanpa Daur Ulang
Selain melalui daur ulang, sampah juga bisa langsung dimanfaatkan tanpa daur ulang. Contohnya adalah pemanfaatan ban-ban bekas yang dijadikan perabot ( meja, kursi, dan pot ), serbuk gergaji sebagai media\ penanaman jamur, botol, dan kaleng yang dapat digunakan untuk pot.

SISTEM PENCERNAAN PADA MANUSIA

Sistem pencernaan makanan pada manusia

Filed under: Sistem Pencernaan — gurungeblog @ 5:34 am
Tags: 

sistem-pencernaan

sistem-pencernaan

Sistem pencernaan makanan pada manusia terdiri dari beberapa organ, berturut-turut dimulai dari
1. Rongga Mulut,
2. Esofagus
3. Lambung
4. Usus Halus
5. Usus Besar
6. Rektum
7. Anus.

Rongga Mulut

rongga-mulut

rongga-mulut

Mulut merupakan saluran pertama yang dilalui makanan. Pada rongga mulut, dilengkapi alat pencernaan dan kelenjar pencernaan untuk membantu pencernaan makanan. Pada Mulut terdapat :
a.Gigi
Memiliki fungsi memotong, mengoyak dan menggiling makanan menjadi partikel yang kecil-kecil. Perhatikan gambar disamping.
b..Lidah
Memiliki peran mengatur letak makanan di dalam mulut serta mengecap rasa makanan.
c..Kelenjar Ludah
Ada 3 kelenjar ludah pada rongga mulut. Ketiga kelenjar ludah tersebut menghasilkan ludah setiap harinya sekitar 1 sampai 2,5 liter ludah. Kandungan ludah pada manusia adalah : air, mucus, enzim amilase, zat antibakteri, dll. Fungsi ludah adalah melumasi rongga mulut serta mencerna karbohidrat menjadi disakarida.

Esofagus (Kerongkongan)
Merupakan saluran yang menghubungkan antara rongga mulut dengan lambung. Pada ujung saluran esophagus setelah mulut terdapat daerah yang disebut faring. Pada faring terdapat klep, yaitu epiglotis yang mengatur makanan agar tidak masuk ke trakea (tenggorokan). Fungsi esophagus adalah menyalurkan makanan ke lambung. Agar makanan dapat berjalan sepanjang esophagus, terdapat gerakan peristaltik sehingga makanan dapat berjalan menuju lambung

Lambung

lambung

lambung

Lambung adalah kelanjutan dari esophagus, berbentuk seperti kantung. Lambung dapat menampung makanan 1 liter hingga mencapai 2 liter. Dinding lambung disusun oleh otot-otot polos yang berfungsi menggerus makanan secara mekanik melalui kontraksi otot-otot tersebut. Ada 3 jenis otot polos yang menyusun lambung, yaitu otot memanjang, otot melingkar, dan otot menyerong.
Selain pencernaan mekanik, pada lambung terjadi pencernaan kimiawi dengan bantuan senyawa kimia yang dihasilkan lambung. Senyawa kimiawi yang dihasilkan lambung adalah :

  • Asam HCl ,Mengaktifkan pepsinogen menjadi pepsin. Sebagai disinfektan, serta merangsang pengeluaran hormon sekretin dan kolesistokinin pada usus halus
  • Lipase , Memecah lemak menjadi asam lemak dan gliserol. Namun lipase yang dihasilkan sangat sedikit
  • Renin , Mengendapkan protein pada susu (kasein) dari air susu (ASI). Hanya dimiliki oleh bayi.
  • Mukus , Melindungi dinding lambung dari kerusakan akibat asam HCl.

Hasil penggerusan makanan di lambung secara mekanik dan kimiawi akan menjadikan makanan menjadi bubur yang disebut bubur kim.

Fungsi HCI Lambung :
1. Merangsang keluamya sekretin
2. Mengaktifkan Pepsinogen menjadi Pepsin untuk memecah protein.
3. Desinfektan
4. Merangsang keluarnya hormon Kolesistokinin yang berfungsi merangsang empdu mengeluarkan getahnya.

Usus Halus

usus-halus

usus-halus

Usus halus merupakan kelanjutan dari lambung. Usus halus memiliki panjang sekitar 6-8 meter. Usus halus terbagi menjadi 3 bagian yaitu duodenum (± 25 cm), jejunum (± 2,5 m), serta ileum (± 3,6 m). Pada usus halus hanya terjadi pencernaan secara kimiawi saja, dengan bantuan senyawa kimia yang dihasilkan oleh usus halus serta senyawa kimia dari kelenjar pankreas yang dilepaskan ke usus halus.
Senyawa yang dihasilkan oleh usus halus adalah :

  • Disakaridase Menguraikan disakarida menjadi monosakarida
  • Erepsinogen Erepsin yang belum aktif yang akan diubah menjadi erepsin. Erepsin mengubah pepton menjadi asam amino.
  • Hormon Sekretin Merangsang kelenjar pancreas mengeluarkan senyawa kimia yang dihasilkan ke usus halus
  • Hormon CCK (Kolesistokinin) Merangsang hati untuk mengeluarkan cairan empedu ke dalam usus halus.

Selain itu, senyawa kimia yang dihasilkan kelenjar pankreas adalah :

  • Bikarbonat Menetralkan suasana asam dari makanan yang berasal dari lambung
  • Enterokinase Mengaktifkan erepsinogen menjadi erepsin serta mengaktifkan tripsinogen menjadi tripsin. Tripsin mengubah pepton menjadi asam amino.
  • Amilase Mengubah amilum menjadi disakarida
  • Lipase Mencerna lemak menjadi asam lemak dan gliserol
  • Tripsinogen Tripsin yang belum aktif.
  • Kimotripsin Mengubah peptone menjadi asam amino
  • Nuklease Menguraikan nukleotida menjadi nukleosida dan gugus pospat
  • Hormon Insulin Menurunkan kadar gula dalam darah sampai menjadi kadar normal
  • Hormon Glukagon Menaikkan kadar gula darah sampai menjadi kadar normal

PROSES PENCERNAAN MAKANAN
Pencernaan makanan secara kimiawi pada usus halus terjadi pada suasana basa. Prosesnya sebagai berikut :
a. Makanan yang berasal dari lambung dan bersuasana asam akan dinetralkan oleh bikarbonat dari pancreas.
b. Makanan yang kini berada di usus halus kemudian dicerna sesuai kandungan zatnya. Makanan dari kelompok karbohidrat akan dicerna oleh amylase pancreas menjadi disakarida. Disakarida kemudian diuraikan oleh disakaridase menjadi monosakarida, yaitu glukosa. Glukaosa hasil pencernaan kemudian diserap usus halus, dan diedarkan ke seluruh tubuh oleh peredaran darah.
c. Makanan dari kelompok protein setelah dilambung dicerna menjadi pepton, maka pepton akan diuraikan oleh enzim tripsin, kimotripsin, dan erepsin menjadi asam amino. Asam amino kemudian diserap usus dan diedarkan ke seluruh tubuh oleh peredaran darah.
d. Makanan dari kelompok lemak, pertama-tama akan dilarutkan (diemulsifikasi) oleh cairan empedu yang dihasilkan hati menjadi butiran-butiran lemak (droplet lemak). Droplet lemak kemudian diuraikan oleh enzim lipase menjadi asam lemak dan gliserol. Asam lemak dan gliserol kemudian diserap usus dan diedarkan menuju jantung oleh pembuluh limfe.

Usus Besar (Kolon)

usus-besar

usus-besar

Merupakan usus yang memiliki diameter lebih besar dari usus halus. Memiliki panjang 1,5 meter, dan berbentuk seperti huruf U terbalik. Usus besar dibagi menjadi 3 daerah, yaitu : Kolon asenden, Kolon Transversum, dan Kolon desenden. Fungsi kolon adalah :
a. Menyerap air selama proses pencernaan.
b. Tempat dihasilkannya vitamin K, dan vitamin H (Biotin) sebagai hasil simbiosis dengan bakteri usus, misalnya E.coli.
c. Membentuk massa feses
d. Mendorong sisa makanan hasil pencernaan (feses) keluar dari tubuh. Pengeluaran feses dari tubuh ddefekasi.

Rektum dan Anus
Merupakan lubang tempat pembuangan feses dari tubuh. Sebelum dibuang lewat anus, feses ditampung terlebih dahulu pada bagian rectum. Apabila feses sudah siap dibuang maka otot spinkter rectum mengatur pembukaan dan penutupan anus. Otot spinkter yang menyusun rektum ada 2, yaitu otot polos dan otot lurik.
Gangguan Sistem Pencernaan
• Apendikitis-Radang usus buntu.
• Diare- Feses yang sangat cair akibat peristaltik yang terlalu cepat.
• Kontipasi -Kesukaran dalam proses Defekasi (buang air besar)
• Maldigesti-Terlalu banyak makan atau makan suatu zat yang merangsang lambung.
• Parotitis-Infeksi pada kelenjar parotis disebut juga Gondong
• Tukak Lambung/Maag-”Radang” pada dinding lambung, umumnya diakibatkan infeksi Helicobacter pylori
• Xerostomia-Produksi air liur yang sangat sedikit
Gangguan pada sistem pencernaan makanan dapat disebabkan oleh pola makan yang salah, infeksi bakteri, dan kelainan alat pencernaan. Di antara gangguan-gangguan ini adalah diare, sembelit, tukak lambung, peritonitis, kolik, sampai pada infeksi usus buntu (apendisitis).
Diare
Apabila kim dari perut mengalir ke usus terlalu cepat maka defekasi menjadi lebih sering dengan feses yang mengandung banyak air. Keadaan seperti ini disebut diare. Penyebab diare antara lain ansietas (stres), makanan tertentu, atau organisme perusak yang melukai dinding usus. Diare dalam waktu lama menyebabkan hilangnya air dan garam-garam mineral, sehingga terjadi dehidrasi.
Konstipasi (Sembelit)
Sembelit terjadi jika kim masuk ke usus dengan sangat lambat. Akibatnya, air terlalu banyak diserap usus, maka feses menjadi keras dan kering. Sembelit ini disebabkan karena kurang mengkonsumsi makanan yang berupa tumbuhan berserat dan banyak mengkonsumsi daging.
Tukak Lambung (Ulkus)
Dinding lambung diselubungi mukus yang di dalamnya juga terkandung enzim. Jika pertahanan mukus rusak, enzim pencernaan akan memakan bagian-bagian kecil dari lapisan permukaan lambung. Hasil dari kegiatan ini adalah terjadinya tukak lambung. Tukak lambung menyebabkan berlubangnya dinding lambung sehingga isi lambung jatuh di rongga perut. Sebagian besar tukak lambung ini disebabkan oleh infeksi bakteri jenis tertentu.
Beberapa gangguan lain pada sistem pencernaan antara lain sebagai berikut: Peritonitis; merupakan peradangan pada selaput perut (peritonium).
Gangguan lain adalah salah cerna akibat makan makanan yang merangsang lambung, seperti alkohol dan cabe yang mengakibatkan rasa nyeri yang disebut kolik. Sedangkan produksi HCl yang berlebihan dapat menyebabkan terjadinya gesekan pada dinding lambung dan usus halus, sehingga timbul rasa nyeri yang disebut tukak lambung. Gesekan akan lebih parah kalau lambung dalam keadaan kosong akibat makan tidak teratur yang pada akhirnya akan mengakibatkan pendarahan pada lambung.
Gangguan lain pada lambung adalah gastritis atau peradangan pada lambung. Dapat pula apendiks terinfeksi sehingga terjadi peradangan yang disebut apendisitis.
.

3 bloggers like this.